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do in Eq. (C4). Thus the estimate of the dV term [of 
Eq. (C5)] used in Sec. 4 has the correct structure, but 
errs only in what is used for Vo(p,pf | 0). Since this Vo is 
reduced to a constant in Eqs. (4.33) and (4.34), we 
conclude that the estimate of the new effects is not 
essentially the worse by use of the weaker iteration 
procedure. 

However, the third remark above, the approximation 
for Vo to be used in the first part of the square brackets 
of Eq. (C5), is a more difficult matter. If we had used a 
shielded expression as in Eq. (3.22), we would have 
obscured the Hermiticity that in Sec. 4 appears in TF(3), 
and was referred to in the second paragraph below Eq. 
(C5). The weaker iteration procedure that led to Eq. 
(2.19), instead of to a shielding denominator as in 
Eq. (3.18), really affects only the Vo term in Eq. (C5) 

I. INTRODUCTION 

SOME years ago, Slater, Statz, and Koster1 (SSK) 
considered the problem of two electrons in an 

empty band (or two holes in a full band) with a view to 
determining whether a triplet or singlet state of the 
pair has lower energy. They concluded that, if the 
band is nondegenerate, a singlet will always be the 
lower. Recent developments in scattering theory2 led 
us to re-examine the model of SSK to investigate 
whether rigorous conclusions may be drawn from it 
concerning the statistical mechanics of a low-density 
electron (or hole) system. 

In a two-body problem, the scattering amplitude is 
a useful quantity to calculate. Not only does it give 
information concerning actual scattering processes, but 
energies of bound states may be calculated, and, of 
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2 J. Callaway, J. Math. Phys. 5, 783 (1964). 

and does not affect the structure of the new type of term 
proportional to dV. Or, stated differently, the weaker 
iteration procedure affects primarily the spin-mde-
pendent details of the shielding in the potential function 
V in W, but does not affect the spin-dependent effects 
of the shielding that were the purpose of Sec. 4 to bring 
out. Moreover, even this spin-independent term's ap
proximation cannot be too far off, since the major part 
of the spin-independent shielding comes from the 
d(a—b) term in Eq. (2.2), the others acting as correc
tions which can then be treated by an iteration method 
with a fair degree of accuracy. It is hoped that a more 
accurate treatment can be made, but the difficulties 
become so great that the relatively simple treatment of 
Sec. 4 was considered to be the most useful way of 
presenting the problem. 

most importance for the present problem, the effect 
of the interaction on the two-particle density of states 
may be determined. Knowledge of the appropriate 
density of states makes possible calculations of im
portant thermodynamic quantities. 

One way of obtaining a relation between scattering, 
the density of states, and thermodynamics is through 
the virial expansion of quantum statistics.3 It is well 
known that for a gas, the second virial coefficient can 
be exactly expressed in terms of integrals involving the 
scattering phase shifts. We show here how the virial 
expansion may be constructed in a solid-state problem, 
and give an exact expression for the second virial 
coefficient when only short-range interactions are 
included. This theory makes possible a general approach 
to the statistical mechanics of interacting excitations 
at low density. 

Applications of the virial expansion in solid-state 
problems have not been developed extensively hereto
fore, presumably because the density of electrons in a 

3 K. Huang, Statistical Mechanics (John Wiley & Sons, Inc., 
New York, 1963), Chap. 14. 
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normal solid is so high that an expansion in powers of 
the density seems to be of little interest. There are, 
however, problems in which the behavior of a small 
number of carriers—electrons or holes—is of consider
able interest. Ferromagnetism is actually one example 
of this, since in the case of nickel there is only about 
0.6 hole per atom, and in nickel-copper alloys the 
density of holes can be reduced much further while the 
system remains ferromagnetic. 

II. THE TWO-BODY PROBLEM 

We begin by reviewing the equations derived by 
SSK for the two-electron system. One considers two 
electrons in a crystal, which is described by a set of 
one-particle Bloch wave functions ^s(k,r) and energy 
levels es(k). (Here s is the band index and k is the wave 
vector.) Wannier functions as(r—Rn) are denned by 

as(r-Rn) = / 6 r * - R ^ s ( k , r ) ^ , (1) 
(2TT)3 /2J 

in which 12 is the volume of the unit cell, Rn is a direct 
lattice vector, and the integration includes a single 
Brillouin zone. The two electrons have the Hamiltonian 

H=H(1)+H(2)+V(1,2), (2) 

where the single-particle portions include the periodic 
potential of the crystal. Thus we have 

H(l)^.(k,r1) = €.(k)^.(k,r1). (3) 

The wave function for the two-electron problem is 
expanded in Wannier functions 

*(1,2) = E ^.«(R*,R»K(ri-R*)a«(r2-Rn). (4) 
s,t,mn 

This expansion is substituted into the Schrodinger 
equation. After a straightforward calculation, one 
finds an equation satisfied by the coefficient U: 

E [«.(Ri)J7.«(Rm-Ri, R»)+0«(R,)tf.«(Rm, R - -RO] 
i 

+ E Upq(Rm—Rj, Rn—Rj) 

X(s,t;tn, n\V\m—jy n—I;pyq) 

= E?7e<(Rm,Rn). (5) 

In this equation, the matrix elements of the potential 
are given by 

(s,t; m, n\V\m—j, n—l; p,q) 

= Ls*(r1-Rm)a f*(r2-Rn)eO(l,2)^(r1-R7re+RJ) 

Xflflfrj-Rn+ROdVidV,. (6) 

The quantities S8(R{) are Fourier coefficients of the 

energy 

&(R,) = [eik'Ries(k)d*k. (7) 
(2TT)3 J 

It is possible to separate variables in (5) by taking 
out the motion of the center of mass of the pair. We 
define a function Fst(Rm— Rn) by 

I/.,(Rm,Rn) = exp[fK- (Rm+Rn)/2]F.«(Rm-Rn). (8) 

The quantity K is essentially the momentum of the 
center of mass. The function Fst satisfies the equation 

EC^CRO^-^^^+ftCRO^^^-SLo^CRn-RO 
i 

+ E eiK-<>Ri+*^2(s,t;n,0\V\n-!, -j;p,q) 
P9,]l 

XF, f l(R»-Ri+Ri) = o. (9) 

Since the Hamiltonian considered does not contain 
spin, the full two-body wave function is a product of a 
space function [which is given by Eq. (5)] and a spin 
function describing either a singlet or a triplet state. 
In a singlet state, the space wave function must be 
symmetric; for a triplet state it is antisymmetric. This 
leads to a requirement on F: 

Fst(R)=±Fts(-R), (10) 

where the plus sign goes with the singlet and the minus 
sign with the triplet states. 

We now make the rather drastic approximation of 
retaining only a single matrix element of the inter
action. This is the one in which all the Wannier func
tions are centered on the same site: Rn=Rj=Ri—0. 
In addition, we consider only a single band. The single 
matrix element remaining is simply called VQ. (We also 
drop the band indices.) It is our intention to relax 
these restrictions to some extent in subsequent work, 
since the scattering technique we employ is applicable 
to any potential of finite range, but it should be ob
served that the matrix element we have retained is by 
far the largest. In considering only a single matrix 
element, we are dealing with a model which has been 
employed extensively in the past, and about which it is 
possible to make exact remarks. 

With these assumptions, Eq. (9) reduces to 

E [2S(Rn-Ri) cosK.(Rw-R,)/2~£5n jF(R0 
i 

+ V0F(0) = 0. (11) 

This is the equation we will solve. It is the same as 
that considered by SSK except that those authors 
neglected the center-of-mass momentum. 

To solve the equation, we first need a set of normal
ized eigenfunctions of the Hamiltonian for free particles. 
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These functions Fm(Rn) are given by 

singlet state 

^w
(o)(Rn)=r 

triplet state 

Q 

^(o
(0)(R 

4TT3(1+5 

O f 2 

]l/2 
cosk-R„; (12) 

r it T / 2 

n ) = Si. 
L47r3J 

sink*Rw (13) 

These functions are solutions for an energy E given by 

£=£(K,k) = e(K/2+k)+€(K/2~-k). (14) 

Since the interaction contributes only when the relative 
coordinate is zero, it is evident that there is no scatter
ing in triplet states. We do not consider the triplet 
states further in this*section. 

It is possible to solve Eq. (12) with the aid of a 
Green's function which, in the case of singlet states, is 
given by 

0 
SK(R W ,R . ) = — [ (1+5 W ) O)(1+5 W , 0 ) ] - 1 / 2 

4TT3 

X 
/ 

cosk • RTO cosk • Rnd 

E-E(K,k)+ie 
(15) 

We have chosen the Green's function which satisfies 
an outgoing wave boundary condition. It is easily 
verified that this function obeys the equation 

E [2«(R.-Ri) cosiK- (R.-R,) -£8». i ] 
i 

X9K(R{,Rm)=-3M,m. (16) 

It is easily seen, with the aid of (16), that Eq. (11) 
becomes 

F(R„)=i?»'(Rn)+^o9K(R„,0)F(0). (17) 

This equation can be solved immediately. The solution 
is 

VoQK(Rn,0)Fm(0) 
F(R,) = F0»(R).)--

1 - F O 9 K ( 0 , 0 ) 

o y * ( - cosk-R„ 2-W0gK(R*,0)-

(l+5n0)1/2
 1 -FO8K(0 ,0 ) . -m (18) 

To obtain the scattering amplitude, we require the 
asymptotic form of the Green's function gx(Rw,0) for 
large Rn. It follows from Eq. (15) with the use of the 
inversion symmetry of the energy that 

ft 
gK(Rn,o)=— [2(i+5,,0)]-1 /2 

4TT 3 

x / 
yik'Rn 

E-E(K,k)+ie 
d*k. (19) 

The evaluation of integrals of this type is discussed in 
Ref. 2. The asymptotic form of g s is 

gK(Rn,o) = - o y* _£*ko»R« (20) 

(21a) 

4TTV2|RW| T 

in which k0 is a solution of 

J2=£(K,k0), 

whose direction is determined by 

/ Vk£(K,k) \ R„ 
( ) = . (21b) 
\ | v k £ ( K , k ) | / k 0 |Rn | 

The quantity 7 is a function of the first and second 
derivatives of the energy evaluated at ko, whose 
detailed form does not concern us here. The summation 
runs over all the vectors ko which may satisfy the 
conditions (21). We will note that in the case of a 
spherical band, 7 is just the coefficient of k2, e.g., 
€(k) = 7#. 

For the present calculation, we will consider only 
the case in which there is just one ko which satisfies 
(21). Then the asymptotic form of F(Rn) is 

\167r3 / L 
Rn-Le-ik*Rn 

VQtteikrRn 

47T7|Rn|(l-Fo8K(0,0))_ 
(22) 

We define the scattering amplitude / as the coefficient 
of «*••*./|R„| in (22) 

/ = ' 
FoO 

4 ^ 7 ( 1 - FO9K(0,0)) 
(23) 

We require now an expression for 9K (0,0). This is given 
by (15) for n=m=0. We define an effective density of 
states for fixed K by 

I f K - > 0 

u r 
GK(E)=— /5[£-£(K,k)]£pft. (24) 

8TT37 

1 Q f /E\ 
G0(E) = 5BE-e(k)ld*k = m - ) , (25) 

2 8TT3 J \ 2 / 

where^(5 is^the ordinary single-particle density of 
states per atom. We have 

in which 
8 K ( 0 , 0 H / K ( £ W 7 T G K C E ) 

r GK(E') 
IK(E) = P dE\ 

J E-Ef 

(26) 

(27) 

file:///167r3
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and P signifies that the principal value is required. 
For later use, we note that 

/o(0)=-
1 fG(Ef/2) 

E' 
dE' 

1 rO(Ef) 
= — / dE'EE-%1. (28) 

2 J FJ 

The last step serves as the definition of the symbol i", 
which we see is the average of E~l over the band. 

There are localized states of two electrons interacting 
with a repulsive short-range potential. These states 
were considered by SSK for K = 0 . The situation here 
contrasts with that of ordinary quantum mechanics, 
where a bound state cannot be obtained for a repulsive 
potential. The energies of these states are determined 
by the poles of the scattering amplitude / . The condition 
is that 

1 - F O S K ( 0 , 0 ) = 0 . (29) 

Since VQ is real, solutions to (29) can occur only if the 
imaginary part of g vanishes. From (26) and (24), this 
means that, for a given K, the energy E must be outside 
the continuum of states for that K. Since VQ is positive, 
a solution can occur only when IK(E) is positive, that is, 
above the continuum. The localized two-particle states 
have higher energy than any state in the continuum 
for that K. Let EB(K) be the energy of such a state. 
The condition (29) reduces to 

1=VOIK(EB). (30) 

Since IK(E) is monotonically decreasing above the 
band there can be only one bound state. Therefore, a 
single EB(K) curve is determined by (30). We will not 
analyze this function in detail here. 

We require, however, the low-energy limit of the 
scattering amplitude. This is defined as 

•/o= lim /= 
E - + 0 
K - > 0 

FnO 

4x7 
- [ 1 + | VJ.J (31) 

In order to make contact later on with theories of the 
imperfect Fermi gas, we also define a scattering length 
by 

«= -§/o= (OVy&ryJCl+iJVll-1. (32) 

The factor of J in (32) arises because we have considered 
the scattering of two identical particles. 

III. THE PARTITION FUNCTION 

Our principal objective in this work is to investigate 
the thermodynamics of a system of particles, interacting 
through the short-range interaction VQ. A quantity of 
vital importance in this is the two-body partition 
functions, which we define to be 

Z2=Tre-fH*, (33) 

in which H2 is the Hamiltonian of Eq. (2), and £ = 1/kT. 
The use of Z2 in statistical problems will be discussed 
in the next section. At present we obtain a formal 
expression for the change in Z2, AZ2, produced by the 
two-particle short-range interaction 13(1,2). 

First, let us note that we can immediately eliminate 
the summation over spins implied by the trace opera
tion, as far as AZ2 is concerned. This occurs since we 
can classify all two-body states as either singlets or 
triplets. The interaction occurs only in the singlet 
states, so only these need be considered. Therefore, for 
the remainder of this section, we restrict the trace to 
the singlet state. With this understood we write 

T r < r ^ = Tr / b(E-H2)e^EdE 

1 r e-?E 

= — Im Tr / dE, (34) 
TV J E+~H2 

in which E+ indicates that the energy is allowed to 
have a small positive imaginary part, which is set equal 
to zero after integration. We separate from the trace 
the contribution from the bound states, whose energies 
are EB(K). Hence 

Tre~PH2 = y] e~PEB{K) 

K 

1 r 1 
— I m Tr<c> / <r&E dE. (35) 

7T J E+-H2 

The superscript (c) on the trace indicates that only 
continuum states are included. We now wish to exhibit 
explicitly the change due to interactions. We can write 

A Z 2 = T n r ^ - T n r ^ ( 0 ) , (36) 

in which H2
i0) does not include any interaction. From 

the preceding argument, we evidently have 

1 r 1 
T n r ^ ( 0 ) = — Im Tr<«> / tr** 

T J E+-H2^ 

Following the procedures of Ref. 2, we write 

•dE. (37) 

Tr-
1 

E+-H2 dE 

d 
--—logdet[£+-#2] 

= — l o g d e t [ £ + - # 2 < ° > ] 
dE 

+-dE 
log detf 1 V ) . 

\ E+-H2w J 
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Hence 

AZ2^Z\e-pEB(K) Im [e-f>*— 
K I 7T J dE 

Xlogdet 
1 

E+-H2° 
-V dE 

= i ; L - ^ £ ( K ) — i m / (T*E— 
K 7T J dE 7T J dE 

Xlog(l-FogK(0,0))rfEJ (38) 

in which S K ( 0 , 0 ) is the quantity discussed in the 
previous section. Now using Eq. (26), we define a 
"phase shift" 5K by 

5K = tan' 

We have that 

_t TTVOGK(E) 

I-VOIK(E) 
(39) 

ddK d 
= I m — l o g [ l - F 0 g K ( 0 , 0 ) ] . (40) 

dE dE 

Since the term on the right side of (40) is seen from 
Ref. 2 to be proportional to the change in density 
of two-particle states, Eq. (40) expresses the change 
in density of states in terms of the phase shift in the 
conventional manner.3,4 Since the interaction is short 
range, there is in this case only an s-wave phase shift. 

For fixed K, the two-particle states extend from EQ 
to Em (say) [with E 0 = E ( K , 0 ) ] . I t is evident that 
GK(£) = 0 for E^Eo or E^Em. Then it follows that 

5K(£O) = 0 , (41a) 

dK(Em) = 0 if 1 - J V K ( E » ) > 0 , (41b) 

«*(£.») = *• if 1 - F O / K ( £ » ) < 0 . (41c) 

Since / K must go to zero as \/E for large E, the condi
tion 1— VolK(Em)<0 implies that the equation 1 
= VQIK(E) will be satisfied for some EB(K)>Em, and 
hence that there is a localized state for that K. Thus we 
see that in the case of a localized state, the phase shift 
goes to 7r at the top of the band—a reverse Levinson's 
theorem. Now we have 

A Z 2 = E \ ( r f i E * ™ — / e-*E—dE\ . (42) 
K I IT J EQ dE I 

We can integrate the second term by parts once, and 
make use of Eq. (41). 

A Z 2 = - £ [ ^ » < K > - < r ^ * < K > ] 
K 

R I* Em 
— E / **(E)<rfiEdE. (43) 

7T K J E0 

4 Similar use of a phase shift for impurity scattering problems 
may be found in A. Seeger, J. Phys. Radium 23, 616 (1962). 

This is our general expression for AZ2. In the first 
term, the sum over K includes only those values of K 
for which a localized state exists. I t will be observed 
that AZ2 is inherently negative, which is to be expected 
since a repulsive interaction effectively raises the states 
in energy, or more precisely, shifts the density of 
states to higher energy. 

IV. THE VIRIAL EXPANSION 

In this section we consider the grand partition 
function Z for the system of interacting electrons or 
holes treated in Sec. I l l and develop a virial expansion 
by expanding logZ in powers of the density,3*5 The 
existence of an applied magnetic field is considered 
implicitly and an application to the magnetic suscepti
bility of the system is given in the next section. The 
grand partition function is defined such that 

(44) 

(45) 

and v=ft[i, where fx is the chemical potential. Here, as 
in Eq. (33), the trace operation implies summation 
only over states which are antisymmetric in the space 
and spin coordinates together, and Hm is the Hamil-
tonian for m interacting particles. If the terms after the 
first in the expansion of Z are sufficiently small we may 
write 

logZ= (V/vo)(e>+b**'+ • • • ) , (46) 
where 

^ 2 = ( V 2 F ) ( 2 Z 2 - Z 1
2 ) . (47) 

V is the volume of the system, and flo is a quantity 
with the dimensions of volume independent of V, 
defined by 

VQ=V/ZU (48) 

The factor vo/V is introduced so that bi will emerge as 
independent of V. The chemical potential JJ,= V//3 is 
determined by the equation 

with 
logZ=log(l+Z1eH-Z2e2>+ • . . ) , 

Z m = T r ( e - ^ - ) , 

n= (d/dv) logZ, (49) 

where n is the number of particles in the volume V, 
and substituting from (46), we find 

nvo/V=ev+2b^+-', (50) 

solving for ev we obtain 

ev= (nvo/V)-2b2(nvo/V)2+ • • • , (51) 

and substitution into (46) yields 

logZ=n£l-b2(nvo/V)l. (52) 

This is the virial expansion, the second virial coefficient 
being —nv^b^ which is valid in the regime of sufficiently 
low densities, for a given temperature, or sufficiently 
high temperatures for a given density. Equation (47) 

5 E . Beth and G. E. Uhlenbeck, Physica 4, 915 (1937). C. 
Bloch and C. de Dominicis, Nucl. Phys. 10, 509 (1959). 
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may be written 

J2= (vo/2V)(2AZ2+2Z20-Z1
2), (53) 

with AZ2 defined by (36) and 

Z M =Trr * *» ( 0 ) , (54) 

where H2(0) is the Hamiltonian for two noninteracting 
particles. 

The calculation of Z2o is straightforward since the 
eigenvalues of H2

m are erf-ey, i^j, where e»- is the 
energy of a one-particle state, the spin being included 
in the suffix i. Thus 

or 

Z20 = L exp[-/3(€rf-ey)] 

^o=i(^i*-z:*-,<"0, 

(55) 

(56) 

and substituting into (53) we obtain 

Z>2= (v0/2V) (2AZ2-Z e-*i>'<). (57) 
i 

The part of the second virial coefficient which is due 
to the interaction between particles may then be 
written 

Bint= -nv0
2AZ2/V= -nVAZ./Zf, (58) 

and AZ2 is given by (43). This result for electrons or 
holes in a solid, when only short-range interactions are 
considered, is the analog of the well-known result for 
an imperfect gas (see, e.g., Ref. 3). 

V. THE HIGH-TEMPERATURE MAGNETIC 
SUSCEPTIBILITY 

The magnetization M of the system is given by 

M= (kT/V) (d/dB) logZ(v,V,T,B), (59) 

where B is the internal magnetic field. We consider 
here only the spin susceptibility. To find Z as a function 
of B we must determine the field dependence of b2. 
Since only singlet states contribute to AZ2 this quantity 
must be independent of B, so it is only necessary to 
evaluate vo, which is related to Z\ by (48), and the 
sum YL exp(—2@€i). I t is convenient now to introduce 
spin explicitly by defining e^ as the energy of a single-
particle state of wave vector k»- and spin component <r, 
measured in units of fi, in the direction of the field. Thus 

€{„ = e (k t-) — 2jjioaB, (60) 

with fxo=gfiB, where g is the spectroscopic splitting 
factor, approximately equal to 2, and JJLB is the Bohr 
magneton. Hence 

£ i = £ exp{-/3[€(k;)-2Moe7£]} 

= 2 cosh&toB £ expC-/S«(k,-)], (61) 

and similarly 

Z exp(-2/5e,) = 2 cosh2ftuoi3 L exp[-2/3e(k»)]. (62) 

I t is convenient to define 

D=V~1AZ2, (63) 

5 n = F - 1 E e x p [ - i ^ € ( * < ) ] , (64) 

and then, from (48) and (61), 

V/vo=2VSicoshPiAoB, (65) 

and from (57) and (62) 

b2= v0(D~S2 cosh2/^0£). (66) 

On substituting (65) and (66) into (46) we obtain 

logZ= 2VSie» coAfinoB+ Ve2v(D-S2 cosh2^ 0 5) . (67) 

The magnetization if, given by (59) is now obtained 
by differentiating (67) with respect to B holding v 
fixed and then eliminating v by means of (51). This 
leads to the expression 

M=2/z0(m>o/F) sinhftz0£ 

X [ S i - (D+S2)(nvo/V) sechft*oB], (68) 

correct to terms in (nvo/V)2. The susceptibility of the 
system in small fields is easily obtained in the form 

/dM\ 

\dB/i 

fifx0
2r D+S2/nv0\ 

1-
VkTL Si 

[-S2/nv0\-\ 

>i \V/J 
(69) 

This expression exhibits the first two terms in a high-
temperature expansion for x and the conditions under 
which higher terms may be neglected are discussed 
later.6 To the same order we may write 

1 1 V 
- = W, 
x x0 mo2 

(70) 

where X0 is the susceptibility for the system without 
interaction between particles and 

1 \ VJ B^ 

DTnf VQ 

S 

DTn 

2VSi2 
(71) 

Comparison of (70) with the expression x - 1 i*1 Stoner's 
collective electron theory7 shows that the temperature 
6' introduced here may be identified with the 6' of 
Stoner's theory. In that theory B' is introduced em
pirically as a measure of the molecular field strength 
and is assumed to be temperature-independent. We 
shall show that, in a physically realistic high-tempera-

6 The spin magnetic susceptibility of interacting electrons at 
low temperatures and high density has been considered by P. A. 
Wolff, Phys. Rev. 120, 814 (1960). 

7 See e.g., A. H. Wilson, Theory of Metals (Cambridge Uni
versity Press, New York, 1953), Chap. 7. 
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ture regime, 0' defined by (71) is in fact, to a good 
approximation, temperature-independent, and further
more is of the order of magnitude required by experi
ment. The present work therefore provides a justification 
of collective electron theory in the high-temperature 
regime, well above the Curie point for a ferromagnet. 

We shall presently proceed to obtain an approximate 
expression for 6' in the regime of moderately high 
temperatures with eF^.kT<^Ae, where €F is the Fermi 
energy and Ae is the bandwidth. This regime exists, for 
example, in a Ni-Cu alloy. However, it is first of all 
instructive to consider the physically unrealistic case 
of extremely high temperatures where kT^>Vo and 
&7»A€. 

A. Extremely High Temperatures 

In this limit (J3—> 0) it is clear that Si=N/V, where 
N is the number of atoms in volume V. To evaluate D 
it is simplest to use an alternative expression for 
AZ2 to that given in (38). AZ2 is defined by (36) and 
clearly 

AZ2=Tr— <be~H )dz, (72) 
2m J \z-H2 z-E^J 

where the integration is taken around a large contour 
enclosing all the poles of the integrand. By a procedure 
very similar to that used to obtain (38) we find 

1 r d 
AZ2= — £ <b e-e*- l o g [ l - F 0 S K ( 0 , 0 ) ] , (73) 

2wi KJ dz 

where SK(0,0) is given by (19) with Rn=0 and £+ 
replaced by z. On the large contour the logarithms 
may be expanded in powers of z~l and e~$z may be 
expanded in powers of fiz. The result is an expansion of 
AZ2 in powers of p and it is found that 

AZ2=-NVol3 (74) 

as /3 —»0. Hence D— —NfiVo/V and on substituting in 
(71) we obtain 

2ktf=nVo/N. (75) 

This result for the extreme high-temperature limit is 
just what is obtained if the Hamiltonian for the many-
body system of particles with short-range interactions 
is treated in the Hartree-Fock approximation. In this 
case we have the approximate Hamiltonian 

fl' = E eianiff+VQ(ntm/N), (76) 

where mff is the occupation number of the one-particle 
state with wave vector k and spin a and wt, *H are the 
total numbers of particles with spin up and down, 
respectively. Stoner's collective electron theory is based 
on the Hamiltonian 

H9 = T,*uni9-\nkff?9 (77) 

where f is the relative magnetization defined by 

f= (» t -»* ) /» - (78) 

Now Hr and H8 are equivalent, differing only by a 
constant, and thus in the Hartree-Fock approximation 
the system behaves as a Stoner system with 0' given 
by (75). Since (75) has been derived exactly in the case 
of extremely high temperatures it is clear that in this 
limit the Hartree-Fock approximation is appropriate, 
as would be expected. It is well known8 that the Hartree-
Fock approximation fails completely at normal tem
peratures and the value of 0' given by (75) is much too 
large. For example, for the d band of a transition metal, 
Vo may be of the order of 10 eV, while an appropriate 
value for kOf is closer to 0.1 eV. In the next paragraph 
it is shown that at moderately high but physically 
accessible temperatures, the calculated value of 6f is 
much reduced and still remains essentially temperature-
independent throughout the regime. 

B. Moderately High Temperatures 
(£F«&r«A£, e '<r) 

The conditions kT^>6F and T^>6' are required in 
order that the virial expansion be valid, and are deter
mined by demanding that the second term in square 
brackets in (69) should be much smaller than 1. The 
condition kT<KAe is required in order that low-tempera
ture approximations may be made in evaluating AZ2. 
An example of a system for which this regime exists 
is provided by the holes in the d band in Ni-Cu alloys. 
In pure Ni, € F ^ 0 . 2 eV, and as the percentage of Cu 
is increased to about 60%, €F —> 0. For a single d band 
Ae^ 1 eV, and 6' is of the same order as €F (see Ref. 8). 
To calculate 0' we must now evaluate D and Si in this 
regime. 

To evaluate AZ2 when kT<^Ae, we need only retain 
the second term in (43), and by a change of variable 
this may be written 

AZ 2- — £ e-^o(K) / 5 K [£ '+£ 0 (K)>-^UE' 
7T K JQ 

- — £*-/»*o(K)/ 80(E
f)e-eE,dEf. (79) 

Only small values of Er and K contribute significantly 
to AZ2 and this justifies replacing the upper limit in 
the integral by <*> and taking K=0 in the integrand. 
We have taken Eo(0) = 0 since 

Eo(K) = £(K,0) = 2e(K/2), (80) 

and the zero of energy is chosen such that e(0) = 0. 
8 See e.g., E. P. Wohlfarth, Rev. Mod. Phys. 25, 211 (1953). 
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Also from (39), (25), and (28) 

TCV&(E'/2) TrV,G{FJ/2) 
h{E') = t&\T-1-zr——r—Tz——~~— , (81) 

2 [ l - F 0 / o ( £ / ) ] 2+Vol 

where (5(e) is the single-particle density of states per 
atom and / = (E~x), the average of Erl over the band 
where E is measured from the bottom of the band. 
The replacement of h(Ef) by its value —1/2 at E'=0 
is justified since Io{Er) is a slowly varying function 
compared with G(E'/2) and the replacement of tan - 1 

by its argument is reasonable since G is small at the 
bottom of the band. These approximations are con
sistent with the assumption €F«&r which restricts us 
to low-particle densities. Thus from (79) and (81) 

A?2 

PV0 

2+Vol 
-AN [/; G(E/2)e-mE J' (82) 

since the density of states per atom in a band with 
energies (80) is 4G(E/2). The integral in (82) may 
easily be expressed in terms of 6*2, defined by (64) and 
we find, using (63) 

16S2
2V V0 

from (71) 

W~-

NkT 2+TV 

n SS2
2 Vo 

N S{ 2+Vol 

(83) 

(84) 

I t is readily shown that if the density of states G(e) 
follows any power law at the bottom of the band, W 
is independent of temperature. In the case G(e)a«1/2 

we find SS2
i/Sii= 1 and so 

W = -
V0 

N2+V0I 
(85) 

I t is convenient to follow previous authors (see, e.g., 
Thompson et al.9) by introducing an effective exchange 
integral / denned by 

and then10 
2k6'=nJ/N, 

/ « 2 7 0 / ( 2 + F o / ) . 

(86) 

(87) 

Comparison of (86) and (75) shows that in the extreme 
high-temperature limit, corresponding to the Hartree-
Fock approximation which includes no correlation 
effects, J is equal to Vo which is the value of the straight
forward exchange integral between any two Bloch 
functions. Thus the value of / given by (87) is an 
effective exchange integral between Bloch functions, 

9 E . D. Thompson, E. P. Wohlfarth, and A. C. Bryan, Proc. 
Phys. Soc. (London) 83, 59 (1964). 

10 Our result for the effective exchange integral has also been 
obtained by J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 275 
(1963), using multiple scattering theory. 

or alternatively an effective intra-atomic Coulomb 
integral. In the limit of zero bandwidth I—»°o and 
thus / —> 0, as is required, since in this limit correlation 
effects dominate and two particles are never on the 
same atom. 

VI. DISCUSSION 

The calculation of the magnetic susceptibility shows 
that in the regime of moderately high temperatures, 
well above the Curie point in a ferromagnet, a system 
of particles in a single band, with short-range inter
actions, behaves as a Stoner system with the molecular 
field parameter 6r given by (85). I t may be concluded 
that in this temperature region the system behaves 
according to an effective Hamiltonian HSJ given by 
(77) with €{<? given by (60). Thus from the present 
view, and in the absence of a fundamental justification 
of Stoner's theory throughout the whole temperature 
range, collective electron theory may be regarded as 
an extrapolation to lower temperatures by means of 
the effective Hamiltonian Hs. 

I t is interesting to estimate the value of / for the 
Ni-Cu alloy system, although the present single band 
model is not strictly applicable. I t is hoped to present a 
generalization of this work to the degenerate band case 
later. I t is believed that the density of states of the d 
band in Ni exhibits a large peak in the neighborhood 
of the ferromagnetic Fermi energy, about 0.2 eV from 
the edge of the band.11 If the holes in the d band are 
considered as occupying a single band, lying near the 
bottom (from the hole point of view) of the complete 
band, a reasonable estimate of / = (E~x) should be the 
value of E~x at the density of states peak, namely 5 eV-1. 
Since Fo~10 eV, and then effectively cancels out, 
7^2/7—0.4 eV. This value is of the right order to give 
a good agreement with observed behavior of Ni and 
Ni-Cu alloys.9 I t should be noted that 6' is only 
temperature-independent in the first approximation and 
that small observed deviations from the predictions of 
collective electron theory may be attributed to a tem
perature-dependent correction term in 6'. 

I t is difficult to relate expression (87) to a result 
obtained by Hubbard12 in which no average (E - 1) seems 
to appear. However, the present work may be related 
to the low-density theory of an imperfect Fermi gas 
(see Huang,3 Chap. 13) by noticing that from (87) 

/== 8wya/Q, (88) 

where a is the scattering length defined by (32). In 
the case of spherical energy surfaces y=fi2/2m and the 
energy levels obtained by Huang are just those of the 
Hamiltonian H' in Eq. (76) with Vo replaced by 7, as 
given by (88). Thus Huang's treatment of magnetic 
properties is exactly equivalent to Stoner's theory with 
0' oca. 

11 G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952). 
12 J. Hubbard3 Proc. Roy. Soc. (London) A276, 238 (1963). 


